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Abstract

In the domain of time series analysis, particularly in event detection tasks, current methodologies predom-
inantly rely on segmentation-based approaches, which predict the class label for each individual timesteps
and use the changepoints of these labels to detect events. However, these approaches may not effectively
detect the precise onset and offset of events within the data and suffer from class imbalance problems.
This study introduces a generalized regression-based approach to reframe the time-interval-defined event
detection problem. Inspired by heatmap regression techniques from computer vision, our approach aims to
predict probability densities at event locations rather than class labels across the entire time series. The
primary aim of this approach is to improve the accuracy of event detection methods, particularly for long-
duration events where identifying the onset and offset is more critical than classifying individual event states.
We demonstrate that regression-based approaches outperform segmentation-based methods across various
state-of-the-art baseline networks and datasets, offering a more effective solution for specific event detection
tasks.

1 Introduction

1.1 Background and Problem Statement

In the past decade, neural networks have become increasingly popular for addressing multivariate time series
problems, including both event detection (ED) and change-point detection (CPD). Event detection refers to
identifying significant occurrences or changes that last a meaningful duration of time within a series, while
change-point detection involves identifying singular points where the statistical properties of the series change
suddenly. For the purposes of this study, we refer to the time-interval-based event detection task as event
detection and the opposite task as change-point detection, in which events last a negligible or no duration of
time. Applications of event detection are numerous, such as sleep staging, sleep detection and seizure detection,
as well as bow-shock event detection [4,[14L{15]. The model architectures most recently employed for these time
series problems include sequence-to-sequence (seq2seq) models based on recurrent neural networks such as gated
recurrent units (GRUs), long-short-term memory units (LSTMs), and/or one-dimensional convolutional neural
networks (1D CNNs), often featuring a UNet-like (hourglass) topology [14}/15,/22].

Traditionally, event detection strategies have predominantly employed segmentation-based methodologies. These
approaches focus on predicting the class of each individual time step rather than the precise onset and offset
of specific events [16,(18]. However, segmentation may not always be the most effective approach, particularly
when the goal is to detect specific event points within the time series.

This study introduces a generalized approach to reframe the event detection problem, inspired by heatmap
regression solutions for two-dimensional keypoint detection in computer vision [12[24]. We redefine the event
detection problem as a regression problem, utilizing deep learning models to predict probability density functions
(pdfs) at each event’s onset and offset locations rather than class labels across the entire time series.

As it is a regression method it is also robust to class imbalance problems exhibited by segmentation techniques
[2l/4]. Additionally, like the gaussian regression targets used in two-dimensional keypoint detection, our approach
addresses labeling ambiguities by approximating a probability distribution instead of relying on hard ground-
truth labels [12}|24]. This is particularly important in time series data, where high-resolution sampling often
contrasts with coarser event annotations, or when the labels contain human error. This solution for event
detection can also be generalized to supervised change-point detection, which is an easier task than event
detection, since it does not consider event durations.

We have also applied this regression method in the Child Mind Institute’s (CMI) sleep detection competition
on Kaggle in September 2023, utilizing it to detect sleep onset and wake events in children using wrist-worn



Figure 1: Example of Segmentation vs PDF Regression Target
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accelerometer data. This approach was subsequently adopted by nearly all of the top-scoring solutions in the
competition [5].

1.2 Previous Work

Recent research in event detection has introduced regression-based methodologies [4]. These methods use
a function defined by the Intersection over Union (IoU) metric applied to overlapping partitions at event
locations to set their regression targets. Although designed to optimize the detection of event onsets and offsets,
these approaches often generate fixed target distributions focused on predicting event midpoints, assuming
uniform event durations. This assumption complicates the accurate identification of event boundaries, as events
typically vary in duration. Furthermore, the reliance on overlapping partitions results in redundant memory
usage and restricts the model’s ability to leverage global context, limiting it to local features around specific
timesteps.

Probability density methods have been developed for sleep-detection problems by fitting Gaussian probability
densities over event locations [17]. These methods involve an indirect process: first, decision trees predict the
distance from each step to the event location, and then another tree predicts the event prediction’s confidence.
These decision trees are only trained on local partitions of data around each timestep. These predictions
are aggregated by summing Gaussians across all timesteps, fitting a probability density to each event. This
approach aids in event detection by identifying the centers of these densities via peak-detection. However, the
requirement for extensive data processing and tabular modeling methods limits their applicability to modern
time series frameworks and models.

In the following, we expand on these previous works by presenting our approach to applying a customizable
probability density function (pdf) objective to two ED datasets, removing the need for overlapping partitions,
and showing how this method can easily be applied to state-of-the-art seq2seq model architectures, which can
incorporate global context, unlike previous work. In Section [3] we explain our approach, apply it to various
state of the art deep learning models, and evaluate them on CMI’s sleep detection dataset. In addition, we
compare them against models trained on segmentation objectives to assess which method performs the best.
Section [4] summarizes our main findings, and [5| discusses limitations and applications before we conclude in
Section [A

2 Regression Methodology

Our method involves convolving a pdf over an event series to produce a series with peaks at each event location.
Since we are aiming to predict both the onset and offset of events, this necessitates two output target series.
Our approach eliminates the need for partitioning by directly convolving a pdf rather than calculating an IoU
over partitions.



Figure 2: Example regarding a convolved gaussian pdf over a binary event detection problem. The bottom
graph shows two time series, corresponding to the onset and offset of the event respectively.
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After a deep learning model predicts these transformed targets, a series of simple post-processing steps are done,
using simple peak finding and smoothing functions like find_peaks and gaussian_filterld in SciPy [23] to find
event locations and rank their relative prominences.

Time series segmentation with deep learning typically involves employing an encoder-decoder network that
outputs a N-dimensional series with the same time dimension as the input series, with N corresponding to the
class probabilities for each time step [14,22]. By simply changing the output layers of these segmentation models
to have 2 dimensions and use a linear activation instead of a softmax activation on the output layer, we are able
to transform these models designed for segmentation into models for pdf regression.

3 Experiments and Evaluation

3.1 Data Description

To test event detection algorithms, we use two real publicly available real-world datasets in order to measure
how our technique performs in different conditions. From the human activity recognition domain, Child Mind
Institute’s (CMI) Sleep Detection Dataset contains 2-dimensional accelerometer signals collected from a hand-
worn wristband at a rate of 0.2 Hz from 250+ subjects [1]. The timestep when the subject begins sleeping and
when the subject wakes up are considered event onsets and offsets.

The other event-detection dataset is from the brain activity domain. The CHB-MIT Scalp EEG Database
contains 22-dimensional electrode signals collected at a rate of 256 Hz from only 22 subjects [21]. The signals
used the International 10-20 system of EEG electrode positions and nomenclature [10]. Features were selected
to utilize a bipolar montage for EEG recordings, where the voltage of one electrode is subtracted from another
(e.g., FP1-F7). Only the subset of signals where seizures were detected were used.

Including these datasets with varying sampling rates, signal lengths, and dimensionality provides a robust
foundation for testing our regression framework. A more comprehensive description of the datasets are available
in Appendix [B]

3.2 Evaluation

We will be using the Event Detection AP (EDAP) metric from the original CMI Sleep Detection competition.
Event Detection AP is a soft ED metric, meaning that it can capture the degree to which a detection represents
a particular event, incorporating the concept of temporal tolerance for inaccuracy in the evaluation [20].

This is different from hard metrics that only reward exact matches for specific thresholds [20]. As such, it is
similar to IoU-threshold average precision metrics commonly used in object detection, but with IoU thresholds



replaced by time tolerance values |18]. The advantage of this metric is that it naturally matches with the
concave probability density functions that we propose.

The metric is evaluated using the following procedure:
e Assignment: Predicted events are matched with ground-truth events.

e Scoring: Each group of predictions is scored against its corresponding group of ground-truth events via
thresholded average precision (AP).

e Reduction: The thresholded AP scores are averaged to produce a single overall score.

e The metric thresholds for the Sleep Detection Dataset, as provided by CMI, include the following values,
in minutes:

[1,3,5,7.5,10,12.5, 15,20, 25, 30]

e The metric thresholds for the Seizure Detection Dataset were inferred based on previous findings, which
state that 50% of seizures were detected within 3 seconds, 71% within 5 seconds, and 91% within 10
seconds [21]. With this in mind, we arbitrarily define the thresholds-in seconds—to be:

[1,2,5,10,20, 60]

3.3 Objective Distributions

Each model will be trained on the segmentation objective and 3 regression objectives created by different
pdfs:

3.3.1 Segmentation

We use the traditional way to train seq2seq models for ED problems using cross entropy loss with the binary
segmentation task.

Example of Segmentation Classification Target
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3.3.2 Regression

Three different probability density functions (pdfs) were utilized. These objectives serve to tailor the model’s
performance to suit various event detection tasks. By adjusting the spread of the pdfs, we can emphasize either
overall event detection accuracy or precise event localization, thereby catering to different requirements in event
detection problems, as indicated by the different EDAP thresholds.

e Hard regression, similar to the binary classification problem with a regression objective. Defined as 1
at the event onsets and offsets and 0 everywhere else.

e Gaussian regression, inspired by keypoint detection methods [12}/24]. Guided by metric thresholds, we
arbitrarily set o = 50 ( 4 minutes) on the Sleep Dataset and o = 256 (1 second) on the Seizure Dataset.

e EDAP Regression, tailored to optimize the Event Detection AP metric specific to each dataset. This
metric employs thresholds at intervals of 1, 3, 5, 7.5, 10, 12.5, 15, 20, 25, and 30 minutes for the Sleep
Dataset and intervals of 1, 2, 5, 10, 20, and 60 seconds for the Seizure Dataset. As the event approaches
the designated time thresholds, the regression target aligns with the metric, increasing accordingly.

We need to normalize each of these pdfs before using them to train the model. This ensures that the model
converges consistently across various target distributions by aligning the initial expected loss from the model
for each pdf. As such, we normalize the target by dividing the target sequence with the following scaling factor

v
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In , w denotes the width of the regression target, and d is a constant that denotes the length of day in
timesteps, in which we expect an event every d steps.

Thus, assuming the model initializes with normally distributed values, the model should initially output an
average around zero for all steps in the time series. With this assumption in , applying the MSE loss
function £ to each initial prediction yields a loss of approximately 1 using :

0[---[of0] (2)

@)

d
1
g Z yz/7 yz ~1 (3)
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Transforming the target in this way ensures that all regression targets scale up to generate similar loss values,
thereby ensuring training stability across different pdfs.

3.4 Preprocessing

Before feeding the training data into the models for deep learning, we preprocess it to reduce dimensionality
and memory usage. This involves downsampling the time series by an order of magnitude, wherein aggregated
features such as mean, standard deviation, maximum, and minimum are computed along each time segment
for continuous features, which are then appended to the feature list. For categorical features, we take the last
value in the downsampled time series.

3.5 Modeling and Training Parameters

We employed three custom-designed models alongside one state-of-the-art architecture. Our custom models
include a bidirectional GRU model and a simplified fully convolutional encoder-decoder network, inspired by
the U-Net architecture seen in U-Time [14,/19]. Additionally, we adapted the U-Time model by incorporating
an attention layer at the bottleneck to enhance feature representation and capture long-range dependencies
[14].

For comparison, we incorporated one state-of-the-art model, PrecTime, which combines convolutional and
recurrent layers to leverage both spatial and temporal features for precise event detection [6].
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of segmentation processing and

These diverse model architectures will help us demonstrate that our simplified regression method can be applied

to various model architectures.

3.6 Postprocessing

Figure [4] illustrates examples of various post-processing pipelines applied to raw regression and segmentation

model outputs.

3.6.1 Regression Postprocessing

Our post processing pipeline for regression follows three simple steps with adjustable hyperparameters applied

on a raw regression prediction:

e Gaussian-smoothing step: Smooth all predictions along the time series with a gaussian filter, with hyper-

parameter o denoting the standard deviation of the gaussian kernel.

e Finding Events: Apply a simple peak-finding function, for example, scipy.find_peaks, to find candidate
peaks in the predictions. This function is similar to the peak detection algorithm detailed in [17].

e Scoring Each Event: The EDAP metric requires each prediction to have a score assigned to it in order to
rank the predictions and determine the optimal thresholds. Thus, we assign the peak probability of the
probability density of an event to that event.

3.6.2 Segmentation Postprocessing

In order to compare our regression methods against segmentation models, we also use a separate post processing
step for segmentation models to determine events. This involves setting a threshold that denotes a state change



Algorithm 1 Regression Post-Processing Procedure

Inputs time series {V,,(t)}7_, and Y, ;7 (t)}E,, threshold p, smooth coef &
= |L/D]| - sequence length

1: procedure FINDEVENTS(Y, 1, o)
2: Initialize S an empty list > onsets
3 Initialize F an empty list > offsets
4 Initialize {Y (t)} .y + {gaussian_smooth(Y,,(t), o)},
5: Initialize { off( )}t?o « {gaussian_smooth(Y,z;(t), o)}, > perform gaussian smoothing
6 S" « peak_detect({Y., (t)},)
7 E' + peak_detect({ Off( )
8 for t < S’ do
9 S.append(t, Yy, (t))
10: for t + E' do
11: E.append(t, Yo7 £(t))

Outputs S, E event locations with relative probability scores

and then finding time steps where the probability for the event exceeds the threshold. We locate events by
locating where the probabilities for a class exceed the given threshold. However, probabilities can go up for
more than one timestep when an event is detected. It is possible that for one single event, the probabilities go
up and down many times, even though they are usually expected to increase continuously afterwards. In other
words, multiple changes in the output of the model can represent one single event. As such, the following steps
are used to reduce the likelihood of this happening:

e Gaussian-smoothing step: Smooth all probability predictions along the time series with a gaussian filter,
with the hyperparameter o denoting the standard deviation of the gaussian.

e Finding Events: Use a threshold p to denote class thresholds. Events occur where the event class’s
predicted probabilities exceed up.

e Scoring Each Event:

0, t< —a,
_1/(1, OéStSO,

HO=91. o0<i<a W
0, a<t

I(t) = (Y = H)(t) (5)

The EDAP metric requires each prediction to have a score assigned to it in order to rank the predictions
and determine the optimal thresholds. This is addressed by convolving the probability predictions along
the time dimension using the following piecewise sliding window function in Equation to obtain a
pseudo-probability function I(¢) mimicking to the probability function obtained using pdf regression, with
« denoting the window size:

A pseudo probability density distribution is generated by the procedure depicted in equation The
absolute value of this distribution is maximized at points where class probabilities change suddenly and
remain changed. Consequently, the probability density generated by this function allow us to score each
candidate event, giving more weight to events with more dramatic changes in class probabilities.

The above segmentation post-processing procedure will be referred to as

Alternatively, events can be directly detected performing a regression-based peak-finding procedure on the
pseudo probability function generated by I. This peak-based event detection method will be referred to as

Both methods were tested and compared.

4 Results

4.1 Experimental Setup
4.1.1 Training Parameters

The models were implemented using the Pytorch v2.0.0 framework [3]. The training parameters are shown
in Table |1} and The network training was performed using the Adam optimizer and a cosine learning rate



Algorithm 2 Traditional Segmentation Post-Processing Procedure (Method 1))

Inputs time series {Y (t)}7_,, threshold y, smooth coef &
T = |L/D| - sequence length

> perform gaussian smoothing

1: procedure FINDEVENTS(Y, 11, 0)
2: Initialize S an empty list
3 Initialize F an empty list
4: Initialize {Y’(t)}L_, « {gaussian_smooth(Y (t), o)},
5: Initialize {I(t)}T_, < {(Y' * H)(t)}, > get pseudo probability density
6: fort <~ 1.. T do
7 if Y[t — 1] < g and Y'[t] > p then
8 S.append(t, |I[t]|)
9 else if Y'[t — 1] > p and Y'[t] < y then
10: E.append(t, |I[t]])

Outputs S, FE event locations with relative probability scores

Algorithm 3 Alternative Segmentation Post-Processing Procedure (Method 2))

Inputs time series {Y (t)}7_,, threshold y, smooth coef &
T = |L/D]| - sequence length
procedure FINDEVENTS(?, W, 0)
: Initialize S an empty list
Initialize F an empty list
Initialize {Y'(t)}L_, « {gaussian_smooth(Y (t), o)},

S’ + peak_detect({I'(t)}1,)
E' « peak_detect({—1I"(t)}_,)
for t + S’ do
S.append(t, |I[t]|)
10: for t + E' do
11: E.append(t, |I[t]])

Outputs S, E event locations with relative probability scores

1:

2

3

4: > perform gaussian smoothing
5. Initialize {I(t)}/_, « {(Y" = H)(t)}], > get pseudo probability density
6:

7

8

9




Table 1: Sleep Detection Training Parameters Table 2: Seizure Detection Training Parameters

Parameter Value Parameter Value

Day Length d 24 x 60 x 12 = 17280 "Day” Length d 60 x 60 x 256 = 921600
Sequence Length L d x 7= 120960 Sequence Length L d = 921600

Min Event Interval « 12 * 30 = 360 Min Event Interval a 25600

Batch Size M 10 Batch Size M 8
Down-sampling Factor D 10 Down-sampling Factor D 64

Learning Rate 0.001 Learning Rate 0.001
Gradient Clipping Norm A 0.1 Gradient Clipping Norm A 0.1

scheduler with no restarts [94[11].

We conduct 4-fold cross-validation on the CMI sleep detection dataset and the CHB-MIT seizure detection
dataset. The models were all trained for 20 epochs, evaluating the network after every epoch, and the one
that yielded the best overall score on the validation set was retained for evaluation. The outputs of the cross-
validation folds were pooled and considered as a whole for computing the final performance of the model.

4.1.2 Evaluation Parameters

Our post-processing step for pdf regression, as shown in Section [3.6.1] involves Gaussian-smoothing using a
smoothing parameter o. Similarly, our process for segmentation uses the tunable smoothing parameter ¢ and
an additional tunable event threshold pu.

1 2 3

0, — — =2 ... 1
el 5o B (6)
o € {None, 1, 10, 100, 1000}

In our experiments, we compared our model’s evaluation by deploying default hyperparameters u = 0.5 and no
gaussian smoothing step. The optimal values of these hyperparameters are estimated using grid search with
the parameter grid shown in Figure [6] to maximize the EDAP metric.
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4.2 Experimental Results

Table 3: Performance obtained by pdf regression on the baseline models with default and tuned hyperparameters,
compared with segmentation objectives on the CMI dataset. We mark our proposed methods in italics, the
highest performing pdf for each model type in bold.

Model Objectives
Segmentation Regression

Model |Meth0d 1| |Meth0d 2| Hard Gaussian EDAP

o GRU 0.477 0.508 0.621 0.610 0.572
§ g UNet 0.470 0.481 0.548 0.566 0.574
°E" et PrecTime [6] 0.410 0.318 0.480 0.483 0.475
] UNet+Attention 0.309 0.324 0.521 0.552 0.542
g = GRU 0.302 0.347 0.586 0.589 0.569
=2 UNet 0.436 0.425 0.522 0.544 0.540
f‘ E PrecTime |[6] 0.269 0.258 0.374 0.467 0.473
UNet+Attention 0.263 0.248 0.494 0.530 0.499

Table 4: Performance obtained by pdf regression on the baseline models with default and tuned hyperparameters,
compared with segmentation objectives on the CHB-MIT Scalp EEG Database. We mark our proposed methods
in italics, the highest performing pdf for each model type in bold.

Model Objectives
Segmentation Regression
Model |Method 1| |Method 2| Hard  Gaussian Custom

o GRU 0.082 0.060 0.159 0.075 0.082
§ g UNet 0.221 0.123 0.099 0.192 0.214
g = PrecTime |[6] 0.077 0.061 0.134 0.138 0.093
% UNet+Attention 0.076 0.000 0.015 0.005 0.014
S GRU 0.025 0.006 0.137 0.069 0.075
g = UNet 0.109 0.018 0.095 0.188 0.208
E Lg PrecTime [6] 0.037 0.008 0.116 0.124 0.092

UNet+Attention 0.011 0.000 0.012 0.005 0.012

Table 5: Performance of the best regression and segmentation models on the CMI database with each threshold
outlined by the EDAP metric. The highest-scores for each threshold are marked in bold.

Model Objective Tolerance Thresholds

Architecture Type Method 12 36 60 90 120 150 180 | 240 | 300 | 360
RNN Regression Hard 0.04 | 0.29 | 0.52 | 0.66 | 0.72 | 0.75 | 0.77 | 0.80 | 0.81 | 0.83
RNN Segmentation | [Method 2[ | 0.02 | 0.19 | 0.34 | 0.47 | 0.56 | 0.62 | 0.66 | 0.71 | 0.74 | 0.76

Table 6: Performance of the best regression and segmentation models on the CHB-MIT Scalp EEG Database
with each threshold outlined by the EDAP metric. The highest-scores for each threshold are marked in bold.

Model Objective Tolerance Thresholds
Architecture Type Method 256 512 | 1280 | 2560 | 5120 | 15360

UNet Regression Custom | 0.02 | 0.05 | 0.13 | 0.19 | 0.31 | 0.58

UNet Segmentation | [Method 1) | 0.01 | 0.02 | 0.16 | 0.28 | 0.39 | 0.47

Regression vs Segmentation Models trained on pdf regression consistently achieved comparable or improved
performance than the models trained on segmentation tasks (Table [3[ and . The top-performing regression
models also match or exceed the precision of segmentation models across all time tolerance thresholds, demon-
strating that pdf regression is superior to the segmentation approaches on these two datasets (Table [5| and

)

Impact of peak-finding approaches There is a significant difference between framing the event detection
challenge as a peak detection task versus a segmentation task. This is evident in the superior performance of
regression-based methods compared to segmentation methods on the CMI dataset. The best regression approach
achieved a tuned EDAP of 0.621, while the best segmentation method achieved 0.508 (Table [3). Even within
segmentation models, employing peak-finding techniques instead of solely identifying class change locations
can be beneficial. Segmentation [Method 2] which uses a sliding window function to identify peaks from class
probabilities, outperformed I@: in 75% of optimized models on the CMI Dataset, achieving a maximum
EDAP of 0.508 compared to 0.477 for [Method 1] However, outperformed [Method 2] on the CHB-MIT
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Dataset, achieving a maximum EDAP of 0.221 compared to 0.123 (Table . This suggests that peak detection
can enhance or degrade performance depending on the model’s underlying confidence. It is clear, though, that
peak-finding benefits regression-based models.

5 Discussion

We have demonstrated that the proposed pdf regression framework outperforms segmentation-based approaches
in the given event detection problems. Additionally, our method can be applied to any seq2seq segmentation
neural-network model by changing only the output layer, meaning that existing segmentation models can easily
be converted to support our objectives.

Limitations We may find more effective methods for extracting events from segmentation probabilities, po-
tentially altering these experiments’ results. This limitation could be tackled in future research. Moreover, our
selection of datasets and evaluation metrics is limited, warranting further exploration to validate the suitability
of pdf regression for various event detection problems. This could involve exploring different evaluation metrics
or datasets.

Cross-Method Ensembling Our method supports the straightforward ensembling of predictions across multi-
ple probability density functions and model architectures by blending output probability distributions. Addition-
ally, the segmentation post-processing method converts segmentation outputs into pseudo probability
distributions that can be blended with regression outputs. This ensemble approach could combine the strengths
of both segmentation and regression methods, leading to more precise event detection.

Online detection Our method could potentially apply to real-time event detection tasks using live data
streams [2]. This could involve using a unidirectional GRU for regression on our target variable and utilizing
its predictions to detect events in real time.

More PDF's Segmentation-based event-detection tasks often necessitate complex loss functions to optimize
different task-specific objectives, such as early event detection, in which events should be detected as soon as
they happen [16]. Our method could potentially simplify this process significantly. By adjusting a pdf function
to be asymmetrical and left-skewed, prioritizing pre-event detection over post-event becomes feasible. This
approach could potentially yield comparable results to customized loss functions, without the need for the
fine-tuning and design efforts needed to design custom loss functions.

Adaptive PDFs: In diffusion models, noise levels start high and are gradually reduced throughout the training
process, which allows the model to generate higher-quality samples as it converges [8]. This gradual reduction of
noise helps the model progressively refine its outputs. Similarly, in event detection, a comparable approach can
be used where the variance of the probability distributions is systematically decreased over time. This reduction
in variance enables the model to focus on finer temporal details as it converges. This method was effectively
utilized in the CMI Sleep Detection Competition, where decaying target PDFs with reduced variability were
employed to enhance the model’s temporal accuracy as training progressed [5]. Future work could investigate
how scheduling affects model performance.

Problem Types We’ve only tested our method on a subset of event detection involving long term time-interval
based events, but it’s evident that our method should also be applicable to change-point detection. For CPD,
this would involve treating each event point as only an onset and ignoring offsets, requiring only one output
dimension instead of two, and performing pdf regression on this objective.

For preliminary experimental data on the point-based event detection case, the reader is referred to the additional
materials presented in Appendix [A]

6 Conclusion

This study presents a generalized regression-based approach to event detection, providing an alternative to
traditional segmentation-based methods and existing regression-based approaches. We introduce techniques
to normalize regression targets across unique pdfs and convert both regression and segmentation predictions
into precise event locations. Specifically, we employ peak detection for regression predictions and various
strategies for segmentation outputs, including peak identification and traditional event-point determination
using thresholds.

This approach to event detection surpasses traditional segmentation methods in accuracy and effectiveness. By
leveraging regression techniques, we provide a versatile and powerful tool for identifying events in time series
data. Unlike existing regression approaches, our method supports the integration of state-of-the-art neural
network models, enhancing its robustness and applicability.
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While this study primarily focuses on event detection tasks such as sleep detection, our method shows promise for
other applications, including change-point detection tasks like fraud event detection, as evidenced by preliminary
experiments in appendix[A] This methodology not only enhances the precision of event detection but also opens
new avenues for the application of deep learning models to complex time series problems, with potential for
broad applicability across many fields.
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Table 7: Bowshock Experimental Parameters

A Additional Experiments

We additionally evaluated our approach on two CPD datasets provided by [4]: the bow shock event detec-
tion dataset and fraud-detection dataset. Table [7] and [J] lists the experimental training parameters for each
dataset respectively, while Table [8| and Table [L0| presents the validation results after training with 5 fold cross
validation.

It is worth mentioning that the validation scheme used in our experiments are not the same used in [4]. Thus,
results may not be entirely comparable.

B Detailed Data Descriptions

B.1 CMI Sleep Detection Dataset

We conducted experiments on Child Mind Institute’s (CMI) sleep detection dataset. The data is provided by
CMI along with the Healthy Brain Network, a landmark mental health study based in New York City [1].

The data contains over 250 publicly available recordings of wrist-worn accelerometer data, collected using wear-
able accelerometers on children spanning multiple days, where each time step corresponds to the accelerometer’s
reading over 5 seconds. The two types of events are onset and wakeup, which correspond to the onset of sleep
and the onset of awakeness, respectively.

This dataset additionally contains the following specifications about sleep periods:
e Each sleep period must be at least 30 minutes long.

e A single sleep period can be interrupted by activity, provided that these interruptions do not exceed 30
consecutive minutes.

e Sleep windows are only detected if the watch is worn for the entire duration of the monitoring period
(details provided below).

e Only the longest sleep window during the night is recorded.
e If no valid sleep window is found, no sleep onset or wake-up event is recorded for that night.

e Sleep events do not need to cross the dayline, and there is no strict limit on the number of sleep events
per day. However, only one sleep window should be assigned per night.

e The number of nights recorded for a series is approximately equal to the number of 24-hour periods in
that series.

There are two input variables that are used to train the models:

15

Parameter Value )
Day Length d 54 % 60 % 15 = 21600 Table 8: Bowshock Results
Seguence Length L d = 21600 Regression Method Precision F1
Min Event Interval o 1 - -

. Universal Deep Learning Approach [4] 0.95 0.95
Batch Size M 10 Ours 0.992 0.951
Down-sampling Factor D 15 s . :
Learning Rate 0.001
Gradient Clipping Norm A 0.1

Table 9: Fraud Experimental Parameters

Parameter Value )
Day Length d 1% 60 % 60 = 3600 Table 10: Fraud Results
Seguence Length L 900 Regression Method Precision F1
Min Event Interval 1 - -

. Universal Deep Learning Approach [4] 0.98 0.85
Batch Size M o Ours 0.783  0.800
Down-sampling Factor D 1 - -
Learning Rate 0.001
Gradient Clipping Norm A 0.1




Key

LL - Left Lateral Chain

RL - Right Lateral Chain

Figure 5: Chains used to caculate timeseries features using a bipolar montage

e anglez - a metric derived from individual accelerometer components and is commonly used in sleep
detection. It measures the angle of the arm relative to the vertical axis of the body [13].

e enmo (Euclidean Norm Minus One) - the Euclidean norm of all accelerometer signals, with negative
values rounded to zero. enmo is one of several commonly computed features representing the acceleration
detected by the accelerometer .

B.2 CHB-MIT Scalp EEG Seizure Detection Database

We conducted our experiments on a subset of the CHB-MIT Scalp EEG Database . The original data provided
by the Children’s Hospital Boston and consists of EEG recordings from pediatric subjects with intractable

seizures [21].

The entire database includes recordings from 22 subjects with a total of 23 cases. Subjects in this dataset
were given anti-seizure medication. Each case originally contained between 9 and 42 continuous waveforms,
collected from a single subject. These recordings have been segmented into one-hour waveforms, though some
cases include longer segments (up to four hours). We only included the continuous waveforms with seizure
events.

The EEG signals were sampled at 256 samples per second with 16-bit resolution. All signals used the Interna-
tional 10-20 system of EEG electrode positions and nomenclature . Features were selected to include the
same 22 EEG signals, utilizing a bipolar montage for EEG recordings, where the voltage of one electrode is
subtracted from another (e.g., FP1-F7). This method reduces common noise and improves the signal-to-noise
ratio, enhancing the detection of localized brain activity by focusing on the potential difference between adjacent
electrodes.

Electrode were placed according to the International 10-20 system. Figure [5| highlights the bipolar electrode
chains used in this study; each chain, for example, the Left Temporal Chain, subtracts neighboring measurements
to produce signals like FP1-F7, F7-T7, and others. These pairs are critical for obtaining high-quality EEG signals
by focusing on the differential voltages between adjacent electrodes.
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